

Cluster the chapters of Lamentations using the Single and Complete linkage Hierarchical methods. Draw the dendrograms and compare the results.

2. Suppose the random variables X_1 , X_2 and X_3 have the covariance matrix

 $\Sigma = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$

Extract all principal components and their corresponding variances.

3. a) Perspiration data from 20 healthy females was analyzed. Three components, X_1 = sweat rate, X_2 = sodium content, and X_3 = potassium content, were measured and the results are as follows:

Sample mean = (4.64, 45.4, 9.965)' and S = $\begin{pmatrix} 2.879 & 10.01 & -1.81 \\ 10.01 & 199.788 & -5.64 \\ -1.81 & -5.64 & 3.628 \end{pmatrix}$ Test H₀: μ = (4, 50, 10)' against H₁: $\mu \neq$ (4, 50,10)' at 10% level of significance. (17) b) In a certain genetical experiment, the following frequencies were obtained:

AB	Ab	aB	ab
140	22	28	10

If the theory predicts the probabilities to be in the ratio

 $(2+\theta)/4$, $(1-\theta)/4$, $(1-\theta)/4$, $\theta/4$,

obtain the MLE of θ and hence test the goodness of fit.

(17)

4. Let {X_n, n = 0,1,2,3,....} be a Markov chain with state space {0,1,2,3,....} and transition function p_{xy} , where $p_{01} = 1$ and for x = 1,2,3,...

$$p_{xy} = \begin{cases} p & \text{if } y = (x+1). \\ (1-p) & \text{if } y = 0, \ 0$$

- a. Find $f_{00}^{(n)}$, for n= 1,2,3,....
- b. Find mean recurrence time of state 0.
- c. Show that the chain is irreducible. Is it ergodic?
- d. Find $\lim_{n \to \infty} p_{x0}^{(n)}$ for x = 0, 1, 2, ..., whenever it exists.
- e. Find the stationary distribution, if it exists.

5. a) An infinite Markov chain on the set of non-negative integers has the transition function as follows:

 $p_{k0} = (k+1) / 2$ and $p_{k,k+1} = 1 / (k+2)$.

- i) Find whether the chain is positive recurrent, null recurrent or transient.
- ii) Find the stationary distribution in case it exists. (17)
- b) Consider a Branching process { X_n , n = 0, 1, 2, ...} with the initial population size $X_0 = 1$ and the following off-spring distribution:

$$p_0 = 1 / 8$$
, $p_1 = 1 / 2$, $p_2 = 1 / 4$, $p_4 = 1 / 8$.

- i) Find the mean of the population size of the nth generation.
- ii) What is the probability of extinction? (17)