M.Sc. DEGREE EXAMINATION - STATISTICS

THIRD SEMESTER - NOVEMBER 2007
ST 3810-STATISTICAL COMPUTING - II

Date : 29/10/2007
Dept. No \square Max. : 100 Marks
Time : 9:00-12:00

ANSWER ANY THREE QUESTIONS

1. The vocabulary "richness" of a text can be quantitatively described by counting the words used once; the words used twice and so forth. Based on these counts, a linguist proposed the following distances between chapters of the Old Testament book Lamentations:

Lamentations chapter

		1	2	3	4	5
Lamentations chapter	2	$\left[\begin{array}{l} 0 \\ 0.76 \end{array}\right.$	0			
	3	2.97	0.8	0		
	4	4.88	4.17	0.21	0	
	5	- 3.86	1.92	1.51	0.51	0

Cluster the chapters of Lamentations using the Single and Complete linkage Hierarchical methods. Draw the dendrograms and compare the results.
2. Suppose the random variables X_{1}, X_{2} and X_{3} have the covariance matrix

$$
\Sigma=\left(\begin{array}{ccc}
1 & -2 & 0 \\
-2 & 5 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Extract all principal components and their corresponding variances.
3. a) Perspiration data from 20 healthy females was analyzed. Three components,
$\mathrm{X}_{1}=$ sweat rate, $\mathrm{X}_{2}=$ sodium content, and $\mathrm{X}_{3}=$ potassium content, were
measured and the results are as follows:
Sample mean $=(4.64,45.4,9.965)$, and $S=\left(\begin{array}{ccc}2.879 & 10.01 & -1.81 \\ 10.01 & 19.788 & -5.64 \\ -1.81 & -5.64 & 3.628\end{array}\right)$
Test $H_{0}: \mu=(4,50,10)^{\prime}$ against $H_{1}: \mu \neq(4,50,10)$ ' at 10% level of significance. (17)
b) In a certain genetical experiment, the following frequencies were obtained:

AB	Ab	aB	ab
140	22	28	10

If the theory predicts the probabilities to be in the ratio

$$
(2+\theta) / 4,(1-\theta) / 4,(1-\theta) / 4, \theta / 4,
$$

obtain the MLE of θ and hence test the goodness of fit.
4. Let $\left\{X_{n}, n=0,1,2,3, \ldots\right\}$ be a Markov chain with state space $\{0,1,2,3, \ldots$.$\} and$ transition function p_{xy}, where $\mathrm{p}_{01}=1$ and for $\mathrm{x}=1,2,3, \ldots$

$$
p_{x y}=\left\{\begin{array}{l}
p \text { if } y=(x+1) \\
(1-p) \text { if } y=0,0<p<1 .
\end{array}\right.
$$

a. Find $\mathrm{f}_{00}{ }^{(\mathrm{n})}$, for $\mathrm{n}=1,2,3, \ldots \ldots$
b. Find mean recurrence time of state 0 .
c. Show that the chain is irreducible. Is it ergodic?
d. Find $\lim \mathrm{p}_{\mathrm{x} 0}{ }^{(\mathrm{n})}$ for $\mathrm{x}=0,1,2, \ldots$, whenever it exists. $\mathrm{n} \rightarrow \infty$
e. Find the stationary distribution, if it exists.
5. a) An infinite Markov chain on the set of non-negative integers has the transition function as follows:

$$
\mathrm{p}_{\mathrm{k} 0}=\quad(\mathrm{k}+1) / 2 \text { and } \mathrm{p}_{\mathrm{k}, \mathrm{k}+1}=1 /(\mathrm{k}+2) .
$$

i) Find whether the chain is positive recurrent, null recurrent or transient.
ii) Find the stationary distribution in case it exists.
b) Consider a Branching process $\left\{\mathrm{X}_{\mathrm{n}}, \mathrm{n}=0,1,2, \ldots\right\}$ with the initial population size $\mathrm{X}_{0}=1$ and the following off-spring distribution:

$$
\mathrm{p}_{0}=1 / 8, \mathrm{p}_{1}=1 / 2, \mathrm{p}_{2}=1 / 4, \mathrm{p}_{4}=1 / 8
$$

i) Find the mean of the population size of the $\mathrm{n}^{\text {th }}$ generation.
ii) What is the probability of extinction?
(17)

